Girth and Chromatic Number of Graphs

نویسنده

  • AARON HALPER
چکیده

This paper will look at the relationship between high girth and high chromatic number in both its finite and transfinite incarnations. On the one hand, we will demonstrate that it is possible to construct graphs with high oddgirth and high chromatic number in all cases. We will then look at a theorem which tells us why, at least in the transfinite case, it is impossible to generalize this to include even cycles. Finally, we will use the probabilistic method to show why it is possible to construct graphs of any given finite girth and finite chromatic number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

A new result on chromaticity of K4-homoemorphs with girth 9

For a graph $G$, let $P(G,lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromatically unique if any graph chromatically equivalent to $G$ is isomorphic to $G$. A $K_4$-homeomorph is a subdivision of the complete graph $K_4$. In this paper, we determine a family of chromatically uni...

متن کامل

A Probabilistic Proof of the Girth-Chromatic Number Theorem

This works presents a formalization of the Girth-Chromatic number theorem in graph theory, stating that graphs with arbitrarily large girth and chromatic number exist. The proof uses the theory of Random Graphs to prove the existence with probabilistic arguments and is based on [1].

متن کامل

A Note on Circular Chromatic Number of Graphs with Large Girth and Similar Problems

In this short note, we extend the result of Galluccio, Goddyn, and Hell, which states that graphs of large girth excluding a minor are nearly bipartite. We also prove a similar result for the oriented chromatic number, from which follows in particular that graphs of large girth excluding a minor have oriented chromatic number at most 5, and for the pth chromatic number χp, from which follows in...

متن کامل

Almost all graphs with high girth and suitable density have high chromatic number

Erdős proved that there exist graphs of arbitrarily high girth and arbitrarily high chromatic number. We give a different proof (but also using the probabilistic method) that also yields the following result on the typical asymptotic structure of graphs of high girth: for all ` ≥ 3 and k ∈ N there exist constants C1 and C2 so that almost all graphs on n vertices and m edges whose girth is great...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009